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Abstract 

What brain mechanisms carry out motion integration and segmentation processes that compute 
unambiguous global motion percepts from ambiguous local motion signals? Consider, for 
example, a deer running at variable speeds behind forest cover. The forest cover is an occluder 
that creates apertures through which fragments of the deer’s motion signals are intermittently 
experienced. The brain coherently groups these fragments into a trackable percept of the deer 
and its trajectory. Form and motion processes are needed to accomplish this using feedforward 
and feedback interactions both within and across cortical processing streams. All the cortical 
areas V1, V2, MT, and MST are involved in these interactions. Figure-ground processes in the 
form stream through V2, such as the separation of occluding boundaries of the forest cover from 
boundaries of the deer, select the motion signals which determine global object motion percepts 
in the motion stream through MT. Sparse, but unambiguous, feature tracking signals are 
amplified before they propagate across position and are integrated with far more numerous 
ambiguous motion signals. Figure-ground and integration processes together determine the 
global percept. A neural model predicts the processing stages that embody these form and 
motion interactions. Model concepts and data are summarized about motion grouping across 
apertures in response to a wide variety of displays, and probabilistic decision making in parietal 
cortex in response to random dot displays. 
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Introduction: The Interdependence of Motion Integration and Segmentation 

Aperture Problem and Feature Tracking Signals. Visual motion perception solves the two 
complementary problems of motion integration and of motion segmentation. The former joins 
nearby motion signals into a single object, while the latter keeps them separate as belonging to 
different objects. Wallach (1935; translated by Wuerger, Shapley and Rubin, 1996) first showed 
that the motion of a featureless line seen behind a circular aperture is perceptually ambiguous: 
No matter what may be the real direction of motion, the perceived direction is perpendicular to 
the orientation of the line. This phenomenon was called the aperture problem by Marr and 
Ullman (1981). The aperture problem is faced by any localized neural motion sensor, such as a 
neuron in the early visual pathway, which responds to a moving local contour through an 
aperture-like receptive field. Only when the contour within an aperture contains features, such as 
line terminators, object corners, or high contrast blobs or dots, can a local motion detector 
accurately measure the direction and velocity of motion (Shimojo, Silverman and Nakayama, 
1989. 

These problems become most challenging when an object moves behind multiple 
occluders. Although the various object parts are then segmented by occluders, the visual system 
can often integrate these parts into a percept of coherent object motion that crosses the occluders. 
Studying conditions such as these under which the visual system can and cannot accomplish 
correct segmentation and integration provides important cues to the processes that are used by 
the visual system to create object motion percepts during normal viewing conditions.  

To solve the interlinked problems of motion integration and segmentation, the visual 
system uses the relatively few unambiguous motion signals arising from image features, called 
feature tracking signals, to select the ambiguous motion signals that are consistent with them, 
while suppressing the more numerous ambiguous signals that are inconsistent with them. In 
addition, the visual system uses contextual interactions to compute a consistent motion direction 
and velocity from arrays of ambiguous motion signals when the scene does not include any 
unambiguous feature tracking signals. A particular challenge is to explain how motion percepts 
can change from ones of integration to segmentation in response to small changes in object or 
contextual cues.  

This chapter summarizes efforts to develop a neural model of the cortical form and 
motion processes that clarify how such motion integration and segmentation processes occur 
(Figure 1). This 3D FORMOTION model has been progressively developed over the years to 
explain and predict an ever-broadening set of data about motion perception; e.g., Baloch and 
Grossberg (1997), Berzhanskaya et al. (2007), Baloch et al. (1999), Chey, Grossberg, and 
Mingolla (1997, 1998), Grossberg et al. (2001), and Grossberg and Rudd (1989, 1992). 
Comparisons with related models are found in these archival articles.  

Neurophysiological Support for Predicted Aperture Problem Solution. In addition to 
model explanations of known data, the model has predicted data that were subsequently reported. 
In particular, Chey, Grossberg, and Mingolla (1997) explained how feature tracking estimates 
can gradually propagate across space to capture consistent motion directional signals, while 
suppressing inconsistent ones, in cortical area MT. Such motion capture was predicted to be a 
key step in solving the aperture problem. Pack and Born (2001) reported neurophysiological data 
that directly support this prediction. As simulated in the model, MT neurons initially respond 
primarily to the component of motion perpendicular to a contour's orientation, but over a period 
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of approximately 60 ms the responses gradually shift to encode the true stimulus direction, 
regardless of orientation. Pack and Born also collected data which support the concept that 
motion signals are used for target tracking. Namely, the initial velocity of pursuit eye movements 
deviates in a direction perpendicular to local contour orientation, suggesting that the earliest 
neural responses influence the oculomotor response. 

Figure 1 
Many psychophysical data also illustrate how feature tracking signals can propagate gradually 
across space to capture consistent ambiguous signals. Castet, Lorenceau, Shiffrar, and Bonnet 
(1993) described a particularly clear illustration of this. Figure 2a summarizes their data. They 
considered the horizontal motion of both a vertical and a tilted line that are moving at the same 
speed. Suppose that the unambiguous feature tracking signals at the line ends capture the 
ambiguous motion signals near the line middle.  The preferred ambiguous motion direction and 
speed are normal to the line's orientation.  In the case of the vertical line, the speed of the feature 
tracking signals at the line ends equals that of the preferred ambiguous speed near the line's 
middle.  For the tilted line, however, the preferred ambiguous speed is less than that of the 
feature tracking speed.  If the speed of the line is judged using a weighted average of feature 
signals and ambiguous signals, then the tilted line will be perceived to move slower than the 
vertical line.  

Figure 2  
To further test this idea, Castet et al. (1993) also showed that the ambiguous speeds have a 
greater effect as line length increases when the line is viewed for a brief duration.  These 
additional data strongly support the idea that feature tracking signals at the line ends propagate 
inwards along the line to capture the ambiguous motion speed and direction there.  Since capture 
takes longer to complete when lines are longer, the ambiguous motion signals have a larger 
effect on longer lines. Chey, Grossberg, and Mingolla (1997) simulated these data, as shown in 
Figure 2b.  

In addition to simulating data of Castet et al. (1993) on how the perceived speeds of 
moving lines are affected by their length and angle, Chey, Grossberg, and Mingolla (1997) used 
similar model mechanisms to also simulate, among other percepts, how the barberpole illusion 
(Wallach, 1976) is produced, how it can be affected by various configurational changes, and how 
plaid patterns move both coherently and incoherently. In addressing plaid pattern motion, the 
model provides explanations of when plaid patterns cohere or do not (Adelson and Movshon, 
1982; Kim and Wilson, 1993; Lindsey and Todd, 1995), how contrast affects the perceived speed 
and direction of moving plaids (Stone, Watson and Mulligan, 1990), and why the movement of 
so-called Type 2 patterns differs from those of Type 1 patterns (Ferrera and Wilson, 1990, 1991; 
Yo and Wilson, 1992). All of these data may be be explained by an interaction of figure-ground 
separation mechanisms in the form system interacting with motion capture mechanisms in the 
motion stream. 

Formotion Binding by Laminar Cortical Circuits. As the model name 3D FORMOTION 
suggests, it proposes how form and motion processes interact to generate coherent percepts of 
object motion in depth. Among the problems that the model analyses are the following form-
motion (or formotion) binding issues, which go beyond the scope of other models: How do form-
based 3D figure-ground separation mechanisms in cortical area V2 interact with directionally 
selective motion grouping mechanisms in cortical areas MT and MST to preferentially bind 
together some motion signals more easily than others? In cases where form-based figure-ground 
mechanisms are insufficient, how do motion and attentional cues from cortical area MT facilitate 
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figure-ground separation within cortical area V2 via MT-to-VI-to-V2 feedback? These processes 
help to explain and simulate many motion data, including the way in which the global 
organization of the motion direction field in areas MT and MST can influence whether the 
percept of an object’s form looks rigid or deformable through time.  

The model also goes beyond earlier motion models by proposing how laminar cortical 
circuits realize these mechanisms (Figure 3). These laminar circuits embody explicit predictions 
about the functional roles that are played by identified cells in the brain. The 3D FORMOTION 
model extends to the motion system laminar models of cortical circuits that have previously 
explained challenging perceptual and brain data about 3D form perception in cortical areas V1, 
V2, and V4 (e.g., Cao and Grossberg, 2005; Grossberg, 1999, 2003; Grossberg and Raizada, 
2000; Grossberg and Seitz, 2003; Grossberg and Swaminathan, 2004; Grossberg and 
Williamson, 2001; Grossberg and Yazdanbakhsh, 2005), as well as about cognitive working 
memory, sequence learning, and variable-rate sequential performance (Grossberg and Pearson, 
2006).  

Figure 3  

Intrinsic and Extrinsic Terminators. A key issue concerns the assignment of motion to an object 
boundary when it moves relative to an occluder. How does the brain prevent motion integration 
across both the occluder and its occluded objects? In the example in Figure 4, motion of the left 
line end corresponds to the real motion of the line. The right line end is formed by the boundary 
between the line and a stationary occluder. Its motion provides little information about the 
motion of the line. Bregman (1981) and Kanizsa (1979), and more recently Nakayama, Shimojo 
and Silverman (1989), have discussed this problem. Nakayama et al. use the terminology of 
intrinsic and extrinsic terminators to distinguish the two cases. An intrinsic terminator belongs to 
the moving object, whereas an extrinsic one belongs to the occluder. Motion of intrinsic 
terminators is incorporated into an object’s motion direction, whereas motion of extrinsic 
terminators is attenuated or eliminated (Duncan, Albright and Stoner, 2000; Lidén and Mingolla, 
1998; Shimojo et al., 1989).   

Figure 4  
The FACADE model (Grossberg, 1994, 1997; Kelly and Grossberg, 2000) of 3D form vision 
and figure-ground separation proposed how boundaries in 3D scenes or 2D images are assigned 
to different objects in different depth planes, and thereby offered a mechanistic explanation of 
the properties of extrinsic and intrinsic terminators. The 3D FORMOTION model 
(Berzhanskaya, Grossberg, and Mingolla, 2007; Grossberg, Mingolla, and Viswanathan, 2001) 
proposed how FACADE depth-selective figure-ground separation in cortical area V2, combined 
with depth-selective formotion interactions from area V2 to MT, enable intrinsic terminators to 
create strong motion signals on a moving object, while extrinsic terminators create weak ones.  
The model starts with motion signals in V1, where the separation in depth has not yet occurred, 
and predicts how V2-to-MT boundary signals can select V1-to-MT motion signals at the correct 
depths, while suppressing motion signals at the same visual locations but different depths.  

Form and Motion are Complementary: What Sort of Depth does MT Compute? The 
prediction that V2-to-MT signals can capture motion signals at a given depth reflects the 
hypothesis that the form and motion streams compute complementary properties (Grossberg, 
1991, 2000). The V1-V2 cortical stream, acting alone, is predicted to compute precise oriented 
depth estimates in the form of 3D boundary representations, but coarse directional motion 
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signals. In contrast, the V1-MT cortical stream computes coarse depth estimates, but precise 
directional motion estimates. Overcoming the deficiencies of the form and motion cortical 
streams in computing precise estimates of form-and-motion-in-depth is predicted to occur via 
V2-to-MT inter-stream interactions, called formotion interactions. These interactions use depth-
selective signals from V2 to capture motion signals in MT to lie at the correct depths. In this 
way, precise form-and-motion-in-depth estimates are achieved in MT, which can, in turn, be 
used to generate good target tracking estimates. 
 Neurophysiological Support for Formotion Capture Prediction. Ponce, Lomber, and Born 
(2006) have reported neurophysiological data that are consistent with the prediction that V2 
imparts finer disparity sensitivity onto MT: When V2 is cooled, depth selectivity, but not motion 
selectivity, are greatly impaired in MT. These data do not support the alternative view that fine 
depth estimates are computed directly in MT.  

There are many psychophysical data that support this view of motion capture. Indeed, the 
V2-to-MT motion selection mechanism clarifies why we tend to perceive motion of visible 
objects and background features, but not of the intervening empty spaces between them. For 
example, consider an example of induced motion (Duncker, 1929/1937) wherein a frame moving 
to the right caused a stationary dot within the frame to appear to move to the left. Motion signals 
must propagate throughout the interior of the frame in order to reach and influence the dot. 
Despite this global propagation, the homogeneous space between the frame and the dot does not 
seem to move. The 3D FORMOTION model predicts that this occurs because there are no 
boundaries between the frame and the dot whereby to capture a motion signal. More generally, 
the model proposes that the formotion interaction whereby V2 boundaries select compatible MT 
motion signals may be necessary for a conscious percept of motion to occur when such 
boundaries are active.  

Figure 5  
V2-to-MT formotion signals overcome one sort of uncertainty in cortical computation. Another 
sort of uncertainty is overcome by using MT-to-V1 feedback signals. These top-down 
modulatory signals can help to separate boundaries in V1 and V2 where they cross in feature-
absent regions. Such feature-absent signals are illustrated, for example, by the chopstick illusion 
(Anstis, 1990); see Figure 5. Here, attention or internal noise signals can amplify motion signals 
of one chopstick more than the other via MST-MT interactions. This stronger chopstick can send 
its enhanced signals to V1 from MT. These enhanced signals, in turn, can use V1-to-V2 figure-
ground separation mechanisms to separate the two chopsticks in depth, with the stronger 
boundary pulled nearer than the weaker one. The nearer boundary can now be completed by 
perceptual grouping mechanisms. In addition, FACADE mechanisms show how the intrinsic 
boundaries of the nearer chopstick can be detached from the farther chopstick, thereby enabling 
the farther chopstick boundaries to also be completed in depth behind those of the occluding 
chopstick. As these boundaries are completed, they are injected back into MT from V2 to 
generate a final percept of two separated figures in depth. 

Another factor that influences motion perception is adaptation. This can be accomplished 
by a process of transmitter habituation, inactivation, or depression. For example, motion signals 
at the positions of a static extrinsic terminator can adapt and therefore become weaker through 
time. Moving intrinsic terminators, on the other hand, generate strong motion signals. The 
adaptation process hereby simplifies the computation of intrinsic motion signals on a relatively 
short time scale.  
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On a longer time scale, bistable motion percepts can occur due to the interaction of 
cooperative-competitive model mechanisms with habituative mechanisms when multiple moving 
objects overlap (Figures 1 and 3). For example, percepts of pairs or of moving plaids random dot 
patterns can alternate between at least two possible perceptual outcomes (Ferrera and Wilson, 
1987, 1990; Kim and Wilson, 1993; Snowden et al., 1991; Stoner and Albright, 1998; Stoner, 
Albright, and Ramachandran, 1990; Trueswell and Hayhoe, 1993). One possible outcome is a 
transparent motion percept, where two gratings or two dot-filled planes slide one over another in 
depth. Alternatively, if the directions of motions are compatible, then displays can produce a 
percept of coherent motion of a unified pattern, and no separation in depth occurs. Under 
prolonged viewing, the same display can perceptually alternate between coherent plaid motion 
and different motions separated in depth (Hupé and Rubin, 2003).  

Figure 6  
Similar mechanisms can explain and simulate percepts of object shapes that are more complex 
than lines or dots. For example, Lorenceau and Alais (2001) studied different shapes moving in a 
circular-parallel motion behind occluders (Figure 6). Observers had to determine the direction of 
motion, clockwise or counterclockwise. The percent of correct responses depended on the type 
of shape, and on the visibility of the occluders. In the case of a diamond (Figure 6A), a single, 
coherent, circular motion of a partially occluded rectangular frame was easy to perceive across 
the apertures. In the case of an arrow (Figure 6C), two objects with parallel sides were seen to 
generate out-of-phase vertical motion signals in adjacent apertures. Local motion signals were 
identical in both displays, and only their spatial arrangement differed. Alais and Lorenceau 
suggested that certain shapes (such as arrows) “veto” motion integration across the display, while 
others (such as diamond) allow it.  

The 3D FORMOTION model explains the data without using a veto process. The model 
proposes that the motion grouping process uses anisotropic direction-sensitive receptive fields 
(see Figure 3) that preferentially integrate motion signals within a given direction across gaps 
produced by the occluders. The explanation of Figures 4D-F follows in a similar way, with the 
additional factor that the ends of the bars possess intrinsic terminators that can strongly influence 
the perceived motion direction of the individual bars.  

Motion grouping also helps to explain percepts of rotational motion using the “gelatinous 
ellipses” display (Vallortigara et al., 1988, Weiss and Adelson, 2000). When “thin” (high aspect 
ratio) and the “thick” (low aspect ratio) ellipses rotate around their centers, the perception of 
their shapes is strikingly different. The thin ellipse is perceived as a rigid rotating form, whereas 
the thick one is perceived as deforming non-rigidly through time. Here, the differences in 2D 
geometry result in differences of the spatiotemporal distribution of motion direction signals that 
are grouped together through time. When these motion signals are consistent with the coherent 
motion of a single object, then the motion grouping process within the model MT-MST 
processing stages (Figure 1) generates a percept of a rigid rotation. When the motion field 
decomposes after grouping into multiple parts, with motion trajectories incompatible with a rigid 
form, a non-rigid percept is obtained. The ability of nearby “satellites” to convert the non-rigid 
percept into a rigid one can also be explained by motion grouping. In contrast, Weiss and 
Adelson (2000) proposed that such a percept can be explained via a global optimization process. 
We believe that motion grouping provides a biologically more plausible explanation. 

Data about probabilistic decision making in response to moving dot patterns will be 
discussed after the model is summarized. 
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3D FORMOTION Model 
The 3D FORMOTION model (Figure 1 and 3) comprises six key interactions involving the 
brain’s form and motion systems. Because model processing stages are analogous to areas of the 
primate visual system, they are called by the corresponding anatomical names: (1) V1-to-MT 
filtering and cooperative-competitive processes set the stage for resolving the aperture problem 
by amplifying feature tracking signals and attenuating ambiguous motion signals so that the 
feature tracking signals have a chance to overwhelm numerically superior ambiguous motion 
signals. (2) 3D boundary representations, in which figures are separated from their backgrounds, 
are formed in cortical area V2. (3) These depth-selective V2 boundaries select motion signals at 
the appropriate boundary positions and depths in MT via V2-to-MT signals. (4) A spatially 
anisotropic motion grouping process propagates across perceptual space via MT-MST feedback 
to integrate veridical feature-tracking and ambiguous motion signals and thereby determine a 
global object motion percept. This is the motion capture process that solves the aperture problem. 
(5) MST-MT feedback can  convey an attentional priming signal from higher brain areas that can 
influence the motion capture process, and have an influence via MT-to-V1 feedback in V1 and 
V2.  (6) Motion signals in MT can disambiguate locally incomplete or ambiguous boundary 
signals in V2 via MT-to-V1-to-V2 feedback.  
 These interactions provide a functional explanation of many neurophysiological data. 
Table 1 summarizes the key anatomical connections and neuron properties that occur in the 
model, alongside selected references supporting those connections or functional properties. Table 
1 also lists the model’s key physiological predictions that remain to be tested. As illustrated in 
Figures 1 and 3, these interactions are naturally understood as part of a form processing stream 
and a motion processing stream.  

Table 1  
 
The Form Processing System 
The model’s form processing system comprises six stages that are displayed on the left sides of 
Figures 1 and 3. Input are processed by distinct ON and OFF cell networks whose cells obey 
membrane, or shunting, equations while they undergo on-center off-surround and off-center on-
surround network interactions, respectively, that are similar to those of LGN cells. These cells 
excite simple cells in cortical area V1 to register boundary orientations, followed by complex 
and hypercomplex stages that perform pooling across simple cells tuned to opposite contrast 
polarities, divisive normalization that reduces the amplitude of multiple ambiguous orientations 
in a region, end-stopping that enhances activity at line-ends, and spatial sharpening. These cells 
input to the perceptual grouping circuit in layer 2/3 of V2. Here bipole cells receive signals via 
long-rang horizontal interactions from approximately collinear cells whose orientation 
preferences lie along, or near, the collinear axis. These cells are indicated by the figure-8 shape 
in Figure 3. They act like statistical “and” gates that that permit grouping only when there is 
sufficient evidence from pairs or greater numbers of inducers on both sides of the cell body 
(Grossberg, 1994; Grossberg and Mingolla, 1985a, 1985b). Grouping is followed by a stage of 
cross-orientation competition that reinforces boundary signals with greater support from 
neighboring boundaries while weakening spatially overlapping boundaries of non-preferred 
orientations. Boundaries are assigned into different depths, as follows:  

Perceptual Grouping and Figure-Ground Separation of 3D Form. The FACADE 
boundary completion process includes separation of extrinsic vs. intrinsic boundaries in depth 
(Grossberg, 1994, 1997; Kelly and Grossberg, 2000) within the pale stripes of V2. One cue of 
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occlusion in a 2D image is a T-junction, as illustrated in Figure 4 where the moving black bar 
intersects the stationary gray rectangular occluder. The top of the T belongs to the occluding gray 
rectangle, while the stem belongs to the occluded black bar. Bipole long-range excitatory 
horizontal interactions can strengthen the boundary of the gray occluder where it intersects the 
black bar, while short-range competition (Figure 3) weakens, or totally inhibits, the boundary of 
the black occluded bar where it touches the gray occluder. This end gap in the black boundary 
initiates the process of separating occluding and occluded boundaries. In other words, perceptual 
grouping properties are predicted to initiate the separation of figures from their backgrounds, 
without the use of explicit T-junction operators. This prediction has received support from 
psychophysical experiments; e.g., Dresp, Durand, and Grossberg (2002) and Tse (2005). Such 
figure-ground separation enables the model to distinguish extrinsic from intrinsic terminators, 
and to thereby select motion signals at the correct depths.   

The 3D FORMOTION model, to the present, has not simulated all stages of boundary 
and surface interaction that are predicted to be used in 3D figure-ground separation. These 
mechanisms are, however, fully simulated in Fang and Grossberg (2007) and Grossberg and 
Yazdanbaksh (2005) using laminar cortical V1 and V2 circuits, as well as in Kelly and 
Grossberg (2000) using non-laminar circuits. Instead, to reduce the simulation computational 
load, as soon as T-junctions were detected by the model dynamical equations, V2 boundaries 
were algorithmically assigned the  depths that a complete figure-ground simulation would have 
assigned them. In particular, static occluders are assigned to the near depth (D1 in figure 3) and 
lines with extrinsic terminators are assigned to the far depth (D2 in Figure 3). These V2 
boundaries are used to provide both V2-to-MT motion selection signals and V2-to-V1 depth-
biasing feedback. While V2-to-V1 feedback is orientation-specific, the V2-to-MT projection 
sums boundary signals over all orientations, just as motion signals do at MT (Albright, 1984). 

Motion Induction of Figure-Ground Separation. When form cues are not available to 
initiate figure-ground separation, motion cues may be able to do so via feedback projections 
from MT to V1 (Figures 1 and 3). Such a feedback projection has been reported both 
anatomically and electrophysiologically (Bullier, 2001; Jones, Grieve, Wang and Sillito, 2001; 
Movshon and Newsome, 1996) and it can benefit from attentional biasing within MT/MST 
(Treue and Maunsell, 1999). As explained above, this mechanism can help to separate chopsticks 
in depth (see Figure 5B). Focusing spatial attention at one end of a chopstick can enhance that 
chopstick’s direction of motion in MT and MST. Enhanced MT-to-V1 feedback can selectively 
strengthen the boundary signals of one chopstick in Figure 5B enough to trigger its boundary 
completion via V1-to-V2 interactions, as well as figure-ground separation that assigned the 
occluded chopstick to a farther depth. Then, by closing the V2-to-MT loop, these two 
overlapping but depth-separated bars can support depth-selective motions by the chopsticks in 
opposite directions (Bradley, Chang and Andersen, 1998; Grossberg et al., 2001). 
 
The Motion Processing System 
The model’s motion processing stream consists of six stages that represent cell dynamics 
homologous to LGN, V1, MT, and MST (Figures 1 and 3, right).  

Level 1: Input from LGN. ON and OFF cell inputs from Retina and LGN, which are 
lumped into a single processing stage, activate model V1 (Xu, Bonds and Casagrande, 2002). 
These inputs are not depth-selective. In response to a 2D picture, this depth-selectivity will come 
from figure-ground separated V2 boundaries when they select consistent motion signals in MT.  
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The 3D FORMOTION model uses both ON and OFF input cells. For example, if a bright 
chopstick moves to the right on a dark background, ON cells respond to its leading edge, but 
OFF cells respond to its trailing edge. Likewise, when the chopstick reverses direction and starts 
to move to the left, its leading edge now activates ON cells and its trailing edge OFF cells. By 
differentially activating ON and OFF cells in different parts of this motion cycle, these cells have 
more time to recover from habituation, so that the system remains more sensitive to repetitive 
motion signals.  

Level 2: Transient cells. The second stage of the motion processing system consists of 
non-directional transient cells, inhibitory directional interneurons, and directional transient cells. 
The non-directional transient cells respond briefly to a change in the image luminance, 
irrespective of the direction of movement. Such cells respond well to moving boundaries and 
poorly to the static occluder because of the habituation of the process that activates the transient 
signal. Adaptation is known to occur at several stages in the visual system, including retinal Y 
cells (Enroth-Cuggell and Robson, 1966; Hochstein and Shapley, 1976a, 1976b) and cells in V1 
(Abbott, Sen, Varela and Nelson, 1997; Carandini and Ferster, 1997; Chance, Nelson and 
Abbott, 1998; Varela, Sen, Gibson, Fost, Abbott and Nelson, 1997) and beyond.  

The non-directional transient cells send signals to inhibitory directional interneurons and 
directional transient cells, and the inhibitory interneurons interact with each other and with the 
directional transient cells (Figure 7). The directional inhibitory interneuronal interaction enables 
the directional transient cells to realize directional selectivity at a wide range of speeds 
(Grossberg, Mingolla, and Viswanathan, 2001). This predicted interaction is consistent with 
retinal data concerning how bipolar cells interact with inhibitory starburst amacrine cells and 
direction-selective ganglion cells, and how starburst cells interact with each other and with 
ganglion cells (Fried, Münch, and Werblin, 2002). The possible role of starburst cell inhibitory 
interneurons in ensuring directional selectivity at a wide range of speeds has not yet been tested. 

Figure 7  
A directionally selective neuron fires vigorously when a stimulus is moved through its receptive 
field in one direction (called the preferred direction), while motion in the reverse direction 
(called the null direction) evokes little response (Barlow and Levick, 1965). Mechanisms of 
direction selectivity include asymmetric inhibition along the preferred cell direction, notably an 
inhibitory veto of null-direction signals.  

As noted above, after the transient cells adapt to a static boundary, then boundary 
segments that belong to a static occluder—that is, extrinsic terminators—in the chopsticks 
display with visible occluders (Figure 5A) produce weaker signals than those that belong to the 
continuously moving parts of the chopstick. On the other hand, in the invisible occluder 
chopsticks display (Figure 5B), the horizontal motion signals at the chopstick ends will 
continually move, hence will be strong, and can thus significantly influence the conscious 
motion percept.  

Level 3: Short-range filter. The short-range filter (Figure 3) helps to selectively 
strengthen unambiguous feature tracking signals, relative to ambiguous motion signals. Cells in 
this filter accumulate evidence from directional transient cells of similar directional preference 
within a spatially anisotropic region that is oriented along the preferred direction of the cell; cf., 
Braddick (1980). Short-range filter cells amplify feature-tracking signals at unoccluded line 
endings, object corners, and other scenic features. The short-range spatial filter, followed by 
competitive selection, eliminates the need to solve the feature correspondence problem that 
various other models use (Reichardt, 1961; van Santen and Sperling, 1985). 
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Level 4: Spatial competition and opponent direction competition. Two kinds of 
competition further enhance the relative advantage of feature tracking signals. These competing 
cells are proposed to occur in layer 4B of V1 (Figure 3, bottom-right). Spatial competition 
among like-directional cells of the same spatial scale further boosts the amplitude of feature 
tracking signals relative to those of ambiguous signals. This happens because feature tracking 
locations are often found at motion discontinuities, and thus get less inhibition than ambiguous 
motion signals that lie within an object’s interior. Opponent-direction competition also occurs at 
this processing stage, with properties similar to V1 cells that may play this functional role (Rust, 
Majaj, Simoncelli and Movshon, 2002). 

Data of Pack, Gartland, and Born (2004) support properties of cells at this model stage. In 
their data, V1 cells exhibit suppression of responses to motion along visible occluders. 
Suppression occurs in the model due to the adaptation of transient inputs to static occluding 
boundaries. In addition, V1 cells in the middle of a grating, where ambiguous motion signals 
occur, respond more weakly than cells at the edge of the grating, where intrinsic terminators 
occur. Model spatial competition between motion signals explains this property through its 
properties of divisive normalization and endstopping. Together these properties amplify 
directionally unambiguous feature tracking signals at line ends relative to the strength of 
aperture-ambiguous signals along line interiors, which compete among themselves for 
normalized activity at their position. 
 Level 5: Long-range filter and formotion selection. The long-range filter pools together 
motion signals with the same, or similar, directional preference from moving features with 
different orientations, contrast polarities, and eyes. These motion signals may are carried from 
model layer 4B of V1 input to model area MT. Its cell targets have properties in the motion 
stream through MT that are homologous to those of complex cells in the form stream through 
V2.  

Area MT also receives a projection from V2 (Anderson and Martin, 2002; Rockland, 
1995). As described above, this V2-to-MT formotion projection is predicted to carry depth-
specific figure-ground separated boundary signals. These V2 form boundaries selectively assign 
to different depths the motion signals coming into MT from layer 4B of V1.  

Formotion selection is proposed to occur via a modulatory on-center, off-surround 
projection from V2 to layer 4 of MT. For example, in response to the chopsticks display with 
visible occluders (Figure 5A), motion signals which lie along the visible occluder boundaries are 
selected in the near depth and are suppressed by the off-surround at other locations at that depth. 
The selected signals will be weak because the bottom-up input from V1 habituates along the 
selected occluder boundary positions. The V2 boundary signals that correspond to the moving 
boundaries select strong motion signals at the farther depth. 

Boundary-gated signals from layer 4 of MT are proposed to input to the upper layers of 
MT (Figure 3, top-right), where they activate a directionally-selective, spatially anisotropic long-
range filter via long-range horizontal connections. The hypothesis that the long-range filter uses 
an anisotropic filter is consistent with data showing that approximately 30 % of the cells in MT 
show a preferred direction of motion that is aligned with the main axis of their receptive fields 
(Xiao, Raiguel, Marcar and Orban, 1997).  

The predicted long-range filter cells in layer 2/3 of MT are proposed to play a role in 
motion grouping that is homologous to the role played by bipole cells in form grouping within 
layer 2/3 of the pale stripes of cortical area V2 (Grossberg 1999; Grossberg and Raizada, 2000). 
As noted above, the anisotropic long-range motion filter allows motion signals to be selectively 
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integrated across occluders in a manner that naturally explains the percepts generated by the 
Lorenceau-Alais displays of Figure 6.  
 Level 6: Directional grouping. The first five model stages can amplify feature tracking 
signals and assign motion signals to the correct depths. However, they do not explain how 
feature tracking signals propagate across space to select consistent motion directions from 
ambiguous motion directions, suppress inconsistent motion directions, all the while without 
distorting their speed estimates,. They also cannot explain how motion integration can compute a 
vector average of ambiguous motion signals across space to determine the perceived motion 
direction when feature tracking signals are not present at that depth. The final stage of the model 
accomplishes this goal by using a motion grouping network that is interpreted to exist in ventral 
MST (MSTv), which is known to be important for target tracking (Bherezovskii and Born, 1999;  
Born and Tootell, 1992; Eifuku and Wurtz, 1998; Pack, Grossberg, and Mingolla, 2001; Tanaka 
et al., 1993). We predict that this motion grouping network determines the coherent motion 
direction of discrete moving objects.  

During motion grouping, cells that code the same, or similar, directions in MT send 
convergent inputs to cells in model MSTv via the motion grouping network. Within MSTv, 
directional competition at each position determines a winning motion direction. This winning 
directional cell then feeds back to its source cells in MT. This feedback selects activities of MT 
cells that code the winning direction, while suppressing activities of cells that code other 
directions. Using this broad feedback kernel, the motion grouping network enables feature 
tracking signals to select similar directions at nearby ambiguous motion positions, while 
suppressing other directions there. In other words, motion capture occurs and disambiguates 
ambiguous motion positions. 

The next cycle of the feedback process allows these newly unambiguous motion 
directions to select consistent MSTv grouping cells at positions near them. As the grouping 
process cycles between MT and MSTv, the motion capture process propagates across space. 
Chey et al. (1997) and Grossberg et al. (2001) used this process to simulate data showing how 
the present model solves the aperture problem via a gradual process of motion capture, and Pack 
and Born (2001) provided supportive neurophysiological data by directly recording from MT 
cells, as noted above.  
 Ubiquitous Circuit Design for Selection, Attention, and Learning. Both the V2-to-MT 
and the MSTv-to-MT signals carry out their selection processes using modulatory on-center, off-
surround interactions. The V2-to-MT signals select motion signals at the locations and depth of a 
moving boundary. The MSTv-to-MT signals select motion signals in the direction and depth of a 
motion grouping. Adaptive Resonance Theory predicted that such a modulatory on-center, off-
surround network would be used to carry out attentive selection and modulation of adaptive 
tuning within all brain circuits wherein fast and stable learning of appropriate features is needed. 
In the V2-to-MT circuit, a formotion association is learned. In the MST-to-MT circuit, 
directional grouping cells are learned. Grossberg (2003) and Raizada and Grossberg (2003) 
review behavioral and neurobiological data that support this prediction in several brain systems. 
The Ponce, Lomber, and Born (2006) study supports the V2-to-MT prediction, but does not 
study how this association is learned. There do not seem to be any direct neurophysiological tests 
of the MSTv-to-MT prediction.  

 
Temporal Dynamics of Decision-Making during Motion Perception 
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Motion Capture in Perceptual Decision-Making. The 3D FORMOTION model sheds new light 
on how the brain makes movement decisions, in particular saccadic eye movements, in response 
to probabilistically defined motion stimuli. It is well known that speed and accuracy of 
perceptual decisions covary with certainty in the input, and correlate with the rate of evidence 
accumulation in parietal and frontal cortical neurons. An enhancement of the 3D FORMOTION 
model with an parietal, indeed an LIP, directional movement processing stage that is gated by the 
basal ganglia (Figure 8) is sufficient to explain many data of this kind (Grossberg and Pilly, 
2007; Pilly and Grossberg, 2005, 2006).  

In particular, this enhanced model can quantitatively simulate dynamic properties of 
decision-making in response to the types of ambiguous visual motion stimuli that have been 
studied in LIP neurophysiological recordings by Newsome, Shadlen, and colleagues. The most 
important circuits of this enhanced model already lie within the 3D FORMOTION model. since 
the rate of motion capture in the MT-MST grouping network covaries with the activation rate 
and amplitude of LIP cells that control a monkey’s observable behavior in the experiment. The 
model hereby clarifies how brain circuits that solve the aperture problem, notably the circuits 
that realize motion capture, control properties of probabilistic decision making in real time. This 
is not surprising when one interprets the motion capture process as a resolution of ambiguity that 
selects the best consensus movement that is compatible with motion data. 

Figure 8  
Are the Brain’s Cecisions Bayesian? These results are of particular interest because some 
scientists, including Newsome and Shadlen, have proposed that perception and decision-making 
can be described as Bayesian inference, which estimates the optimal interpretation of the 
stimulus given priors and likelihoods. However, Bayesian concepts do not provide a way to 
discover the neocortical mechanisms that make decisions. The present model explains data that 
Bayesian models have heretofore failed to explain, does so without an appeal to Bayesian 
inference and, unlike other existing models of these data, generates perceptual representations in 
response to the experimental visual stimuli. The model quantitatively simulates the time course 
of LIP neuronal dynamics, as well as behavioral accuracy and reaction time properties, during 
both correct and error trials at different levels of input ambiguity in both fixed duration and 
reaction time tasks. Model MST computes the global direction of random dot motion stimuli as 
part of the motion capture process, while model LIP computes the perceptual decision that leads 
to a saccadic eye movement. This self-organizing system thus trades accuracy against speed, and 
illustrates how cortical dynamics go beyond Bayesian concepts, while clarifying why probability 
theory ideas are initially so appealing. 
 Concerning the appeal of statistical, in particular Bayesian, concepts, it should be noted 
that the shunting on-center off-surround networks (Grossberg, 1973, 1980) that occur 
ubiquitously in the brain, and also in the 3D FORMOTION model, tend to normalize the 
activities across a neural network. The spatially distributed pattern of these normalized activities 
may be viewed as a type of real-time probability distribution. In addition, any filtering operation, 
such as the short-range and long-range filters, may be interpreted as a prior (namely, the current 
neural signal) multiplied by a conditional probability or likelihood (namely, the filter connection 
strength to the target cell). Likewise, a contrast-enhancing operation, such as the LIP recurrent 
on-center off-surround network that selects a winning direction from filter inputs, may be viewed 
as maximizing the posterior. These insights have been known in the neural modeling literature 
for a long time (Grossberg, 1978). However, as Figures 1, 3, and 8 illustrate, such local processes 
do not embody the computational intelligence of an entire neural system that has emerged 
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through evolution to realize particular behavioral competences, such as motion perception and 
decision-making. 

Two Movement tasks. Newsome, Shadlen, and colleagues studied neural correlates of 
perceptual decision-making in macaques which were trained to discriminate motion direction. 
Random dot motion displays, covering a 5o diameter aperture centered at the fixation point, were 
used to control motion coherence; namely, the fraction of dots moving non-randomly in a 
particular direction from one frame to the next in each of three interleaved sequences. Varying 
motion coherence provided a quantitative way to control the ambiguity of directional information 
that the monkey used to make a saccadic eye movement to a peripheral choice target in the 
perceived motion direction, and thus the task difficulty.  

Two kinds of tasks were employed, namely fixed duration (FD) and reaction time (RT) 
tasks. In the FD task (Roitman and Shadlen, 2002; Shadlen and Newsome, 2001), monkeys 
viewed the moving dots for a fixed duration of 1 s, and then made a saccade to the target in the 
judged direction after a variable delay. In the RT task (Roitman and Shadlen, 2002), monkeys 
had theoretically unlimited viewing time, and were trained to report their decision as soon as the 
motion direction was perceived. The RT task allowed measurement of how long it took the 
monkey to make a decision, which was defined as the time from the onset of the motion until 
when the monkey initiated a saccade.  
  Neurophysiological recordings were done in LIP while the monkeys performed these 
tasks. The recorded neurons had receptive fields (RF) that encompassed just one target, and did 
not include the circular aperture in which the moving dots were displayed. Also, they were 
among those that showed sustained activity during the delay period of a memory-guided saccade 
task. Even though there is no motion stimulus within their classical receptive fields, these 
neurons still respond with directional-selectivity, probably because of extensive training on the 
task during which an association was learned (Bichot et al., 1996). This property has also been 
observed for neurons in superior colliculus whose movement fields contain just one target 
(Horwitz et al., 2004a; Horwitz and Newsome, 2001a).  

Figure 9  
The recorded LIP neurons show visuo-motor responses. On correct trials during the decision-
making period, more coherence in the favored direction causes faster LIP cell activation, on 
average, in both the tasks (Figure 9), and also higher maximal cell activation in the FD task 
(Figures 9(C-F)). More coherence in the opposite direction causes faster cell inhibition in both 
the tasks, and also lower minimal cell activation in the FD task.  

Comparing Trackable Features with Coherently Moving Dots. There are many details 
that need to be carefully discussed to quantitatively simulated data from this paradigm. These 
details should not, however, obscure the main point, which is that a clear mechanistic homolog 
exists between sparse feature tracking signals and sparse but coherent moving dots.  

We have already discuss that the brain needs to ensure that a sparse set of unambiguous 
feature tracking motion signals can gradually capture a vastly greater number of ambiguous 
motion signals to determine the global direction and speed of object motion. In the case of 
random dot motion discrimination tasks, the signal dots at any coherence level produce 
unambiguous, though short-lived, motion signals. The model shows how the same mechanisms 
that help resolve the aperture problem can also enable a small number of coherently moving dots 
to capture the motion directions of a large number of unambiguous, but incoherently moving, 
dots. The intuitive idea is that the MT-MST feedback loop needs more time to capture the 
incoherent motion signals when there are more of them, and cannot achieve as high a level of 
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asymptotic response magnitude when more of them compete with the emerging winning 
direction. In other words, the effectiveness of the motion capture process depends on the input 
coherence. LIP then converts the inputs from MST into an eye movement command, and thereby 
enables the monkey to report its decision via a saccade.  

Experiments that Directly Probe Brain Design vs. Those that Do Not. Another point 
worth noting is that a display of moving dots does not experience an aperture problem. All of the 
dots are capable, in principle, of generating unambiguous directional motion signals. However, 
the model’s circuits reflect, I would argue, a brain design that has evolved to overcome the 
aperture problem. As a result, the brain can compute unambiguous object motion direction 
estimates in response to locally ambiguous motion signals. The brain can thereby successfully 
track important moving targets in the environment even under probabilistically defined 
environmental conditions.  

One might argue that the best experiments are ones that most directly probe brain design. 
From this perspective, experiments with moving dots are not the best possible probes of a system 
that has evolved to solve the aperture problem. Of course, it is not possible to confidently design 
such experiments until one has a strong modeling hypothesis about what this design may be, and 
that can only be gleaned by a sustained theoretical analysis of many different kinds of parametric 
experimental data.  The 3D FORMOTION model contributes to such an analysis, while also 
articulating key features of the brain’s design for generating object motion percepts. 
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Connection/Functional property Selected references 
Functional projections  
V1 4Ca to 4B  Yabuta et al., 2001, Yabuta & Callaway, 1998 
V1 to MT  Anderson et al.,1998; Rockland, 2002; Sincich & 

Horton 2003, Movshon & Newsome, 1996  
V1 to V2  Rockland, 1992, Sincich & Horton, 2002 
V2 to MT  Anderson & Martin, 2002; Rockland 2002; Shipp & 

Zeki 1985; DeYoe & Van Essen 1985  
MT to V1 feedback Shipp & Zeki 1989; Callaway 1998; Movshon & 

Newsome 1996; Hupé et al., 1998  
V2 to V1 feedback Rockland &  Pandya, 1981; Kennedy & Bullier 1985 
  
Properties  
V1 adaptation Abbott et al.,1997; Chance et al., 1998; (rat); 

Carandini & Ferster, 1997, (cat) 
V1(4ca) transient nondirectional cells Livingstone & Hubel, 1984 
V1 spatially offset inhibition Livingstone, 1998; Livingstone & Conway, 2003; 

Murthy & Humphrey, 1999 (cat) 
V2 figure-ground separation Zhou et al., 2000; Bakin et al., 2000 
MT figure-ground separation and   
     disparity sensitivity 

Bradley et al., 1998, Grunewald et al., 2002; Palanca 
& DeAngelis 2003  

MT center- surround receptive fields Bradley & Andersen, 1998; Born, 2000; DeAngelis & 
Uka, 2003 

Some MT receptive fields elongated  
     in preferred direction of motion Xiao et al.,1997 
Attentional modulation in MT Treue & Maunsell, 1999 
 
Predictions  
Short-range anisotropic filter in V1 (motion stream) 
Long-range anisotropic filter in MT (motion)* 
V2 to MT projection carries figure-ground completed-form-in-depth separation signal 
MT to V1 feedback carries figure-ground separation signal from motion to form stream 
MST to MT feedback helps solve aperture problem by selecting consistent motion directions  

 
*Although Xiao et al, 1997 found that some MT neurons have receptive fields that are elongated 
along the preferred direction of motion, there is no direct evidence that these neurons participate 
preferentially in motion grouping. 
 

Table 1. Functional projections and properties of model cell types and predictions. [Reprinted with 
permission from Berzhanskaya et al. (2007)] 
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Figure 1. The 3D FORMOTION model processing stages. See text for details. [Reprinted with 
permission from Berzhanskaya et al. (2007)] 
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Figure 2. Effects of line length and orientation on perceived speed of horizontally moving lines. 
Relative perceived speed for three different line orientations and lengths are shown as 
percentages of the perceived speed of a vertical line of the same length. Part (A) shows data from 
Castet et al. (p. 1925). Each data line corresponds to a different line length (0.21, 0.88, and 1.76 
deg). The horizontal axis shows the ratio of the speed normal to the line’s orientation relative to 
the actual translation speed. The three data points from left to right for each line length 
correspond to line angles of 60, 45, and 30 deg from vertical, respectively. The horizontal dotted 
line indicates a veridical speed perception; results below this line indicate a bias toward the 
perception of slower speeds. Part (B) shows simulation results, also for three lengths and 
orientations. In both cases perceived relative speed decreases with line length and angle from 
vertical. Simulated lines use slightly different orientations from those in the experiments so that 
the simulated input conforms to the Cartesian grid. [Reprinted with permission from Chey et al. 
(1997).] 
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Figure 3. Laminar circuits of 3D FORMOTION model. See text for details. [Reprinted with 
permission from Berzhanskaya et al. (2007).] 
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Intrinsic

Extrinsic

 
 

Figure 4. Extrinsic and intrinsic terminators: The local motion of the intrinsic terminator on the 
left reflects the true object motion, while the local motion of the extrinsic terminator on the right 
follows the vertical outline of the occluder.  
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Figure 5. Chopsticks illusion: Actual chopsticks motion (clear arrows, top) is equivalent in (A) 
and (B), with visible and invisible occluders, respectively. Visible occluders result in a coherent 
vertical motion percept (C, hatched arrow). Invisible occluders result in the percept of two 
chopsticks sliding in opposite directions (D). [Rerpinted with permission from Berzhanskaya et al. 
(2007).] 
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Figure 6. Lorenceau-Alais displays: Visible (A-C) and invisible (D-F) occluder cases. See text 
for details. 
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Figure 7. Schematic diagram of a 1D implementation of the transient cell network showing the 
first two frames of the motion sequence. Thick circles represent active unidirectional transient 
cells while thin circles are inactive unidirectional transient cells. Ovals containing arrows 
represent directionally selective neurons. Unfilled ovals represent active cells, cross-filled ovals 
are inhibited cells and gray-filled ovals depict inactive cells. Excitatory and inhibitory 
connections are labeled by ‘+’ and ‘−’ signs respectively. [Reprinted with permission from 
Grossberg et al. (2001).] 
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Figure 8. Retina/LGN-V1-MT-MST-LIP-BG model processing stages. See text and Appendix 
for details. The random dot motion stimuli are preprocessed by the model Retina/LGN and 
processed by the model cortical V1-MT-MST stream. They contextually transform locally 
ambiguous motion signals into unambiguous global object motion signals with a rate, amplitude, 
and direction that covaries with the amount of dot coherence. These spatially distributed global 
motion signals then feed into model area LIP to generate appropriate directional saccadic eye 
movement commands, which are gated by the model basal ganglia. [Rerpinted with permission 
from Grossberg and Pilly (2007).] 
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Figure 9. Temporal dynamics of LIP neuronal responses during the fixed duration (FD) and 
reaction time (RT) tasks. (A) Average responses of a population of 54 LIP neurons among 
correct trials during the RT task (Roitman and Shadlen, 2002). The left part of the plot is time-
aligned to the motion onset, and includes activity only up to the median RT, and excludes any 
activity within 100 ms backward from saccade initiation (which corresponds to presaccadic 
enhancement). The right part of the plot is time-aligned to the saccade initiation, and excludes 
any activity within 200 ms forward from motion onset (which corresponds to initial transient dip 
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and rise). (B) Model simulations replicate LIP cell recordings during the RT task. In both data 
and simulations for the RT task, the average responses were smoothed with a 60 ms running 
mean. (C) Average responses of a population of 38 LIP neurons among correct trials during the 
2002 FD task (Roitman and Shadlen, 2002), during both the motion viewing period (1 s) and a 
part (0.5 s) of the delay period before the saccade is made. (D) Model simulations mimic LIP cell 
recordings during the 2002 FD task. (E) Average responses of a population of 104 LIP neurons 
among correct trials during the 2001 FD task (Shadlen and Newsome, 2001), during both the 
motion viewing period (1 s) and a part (0.5 s) of the delay period before the saccade is made. (F). 
Model simulations emulate LIP cell recordings during the 2001 FD task. In (A-F), solid and 
dashed curves correspond to trials in which the monkey correctly chose the right target (T1) and 
the left target (T2), respectively. Cell dynamics (rate of rise or decline, and response magnitude) 
reflect the incoming sensory ambiguity (note the different colors; the color code for the various 
coherence levels is shown in the corresponding data panels), and the perceptual decision (note 
the two line types). For 0% coherence, even though there is no correct choice per se, the average 
LIP response rose or declined depending on whether the monkey chose T1 or T2, respectively.  
[Reprinted with permission from Grossberg and Pilly (2007).] 
 
 
 


